Customer Spotlight: Boyce Technologies

For this month’s Customer Spotlight, we spoke with Charles Boyce, President and CEO of Boyce Technologies of Long Island City, New York. Boyce produces easy-to-use and reliable safety and communications equipment for the New York subway system and other clients. After seeing the impact of the current health crisis, Boyce found a way to step up and make a difference. 

Q: Charles, we’ve heard that your company is part of the effort to mass produce ventilators in response to the COVID-19 situation. Can you tell us a bit more about your decision to focus your manufacturing on this effort? 

A:  A few weeks ago, I was driving to work thinking about how the pandemic was unfolding. Being an essential business, it was very emotional bringing people into the factory to work. I was really wondering what type of disaster was about to befall my city, New York. 

The difficulty of finding PPE was already an issue and we were producing tens of thousands of face shields a week. I felt like I wasn’t doing enough, and I always brag about being able to do anything. So, I went into work, met with the engineers, and said we were going to make ventilators. 

Coincidentally, a friend from New Lab called that same morning to ask if I was interested in producing a ventilator that they were designing. I told him I had already started. We created a team of companies from Boyce Technologies, New Lab, and 10X Beta, and began working with the MIT designs. Open source was not an option due to the fact that ventilators can hurt you as quickly as help you, so we focused on making this a commercially viable product. Our adaptive engineered manufacturing process allowed us to invent and produce at the same time. About 25 versions of the ventilator went into the trash. If we waited to do everything consecutively, that would have meant 6 months to a year for the design process. We did it in a month.

Q: Prior to your efforts with ventilators, what was Boyce Technologies manufacturing?

A:  Boyce Technologies manufactures life safety and security equipment for mass transit.

Q: How did you get your start? Can you share a little company history?

A: About 30 years ago, right out of college, I was called by a friend to see if I could solve a problem in electronics security for the New York city transit system. I designed the emergency booth communication system. After that successful project, I continued to design systems for the transit system for over 25 years. About seven years ago, I changed careers from just designing and project managing to the creation of a new company that still did the design, but also included the fabrication of these systems. This new company has large scale and vertical manufacturing capabilities all under one roof. This flexibility has allowed us to change iterations to something like the new ventilator project extremely quickly. 

Q: What obstacles did you face along the way?

A: Mostly they were supply chain-oriented, which is why I decided to bring as much as possible under one roof. The main challenge I have right now is designing a product that is immediately scalable. 

Q: Did your business model allow for your flexibility in changing product lines into a ventilator production facility?

A: A few weeks ago, I didn’t know what a ventilator was. All electronic products have a micro-controller, a circuit board, a chassis, etc. It can be a toaster, refrigerator, or a ventilator. It’s like eating a meal at night, you only have a few choices like beef, chicken, lamb, or fish. Your choices are limited. Being a truly vertically integrated manufacturing facility made this a very easy adaptation. It took about three days and it will take about three days to go back to what we were producing before.

Q: How has Reliant Finishing Equipment helped in your process?

A: We have a very large powder coating line in a compact space. We run it 24/7. The ability to have in-house finishing is an important part of our process. If parts don’t look good, they aren’t good. They need to be durable and clean, especially for medical equipment. Having a fast finishing system enables us to quickly produce and ship 300+ ventilators per day.

Q: Why did you decide to purchase Reliant equipment?

A: A word of mouth recommendation from a powder coater we used to use, directed us to contact Reliant. Reliant was very responsive and flexible in working with the space that we had within the delivery times that we needed. Agility, offering a turn-key system, and being a U.S. manufacturer has made it a pleasure working with Reliant. I wouldn’t go anywhere else.

Q: Can you give us your thoughts on the future of American manufacturing?

A: Overseas dependency has hurt the U.S.  Delivery times, loss of control, and design laziness have been revealed as problematic. It’s been time for manufacturing to return to the U.S. We didn’t predict a global event such as this, but we did not want to be controlled by sub-contractors of any sort. 

At Boyce, we’re expanding and will be quadrupled in size in a couple of years. I think this pandemic has proven that we need to be more self-sufficient–and that’s an understatement. Boyce Technologies is well-positioned to be a model of adaptive engineered manufacturing. We are very proud to be located in New York City, the most amazing and powerful city in the world!

Charles, thank you so much for your time and your company’s awesome support of our country’s medical system during this crisis. 

Please visit Boyce Technologies at to see some of their products and their incredible state-of-the-art facility. You can also check them out on Facebook , Instagram and Twitter.

ABC online article: 

April 2020 Medical Equipment Coatings Bulletin

With the current Covid-19 pandemic occurring, weaknesses in the nation’s supply of medical equipment have been revealed. News outlets have reported on breakdowns with overseas shipments of vital medical equipment due to shelter-in-place policies, as well as geo-political delays that seem unlikely to resolve quickly. Quality also seems to be an issue, since China has implemented more export inspections:

All these factors will motivate the U.S. medical equipment industry to relocate some of its manufacturing back to the United States. This will lead to opportunities fabricating and coating the parts needed to make respirators/ventilators, N95 masks, other PPE supplies, hospital beds, etc. An uptick in this part of the manufacturing and finishing market is already underway.

One of the preferred coatings for steel or aluminum medical equipment is powder coating. This is due to its superior hardness/durability and chemical resistance. The chemical resistance of polyester powder makes it one of the most easily sanitized painted surfaces. Polyester powder coating is resistant to all the CDC-recommended sanitization chemicals, such as distilled water, bleach, hydrogen peroxide, ammonia, alcohol, phenolics, steam, and UV light, per the BIMFA clean guide:

Some hospitals and laboratories are specifying anti-microbial coatings. These coatings contain a small amount of silver that is safe for human contact but inhibits the growth of microbes. This requires a specialty powder that is applied just like any other polyester powder. It also has been used for children’s playground equipment and food processing equipment. Powder manufacturers such as PPG have product lines for these applications:

There are immediate and future opportunities for fabricators and coating shops. Large medical equipment manufacturers will be setting up new operations in the U.S. They are going to need fabricated carts, frames, furniture, electronics housings, and durable parts that meet the needs of healthcare facilities in the United States. Other industries might migrate to more durable finishes as well, due to the sanitization-friendly nature of powder coatings.

If you have any questions about how to set-up a powder finishing operation or convert to anti-microbial powders, please contact our technical sales professionals here or check out our resources page for valuable information.

Cleaning & Pretreatment Primer Part Two: Meeting Standards

In the first installment of Cleaning and Pretreatment, we covered the basics of metal preparation. We discussed the techniques that you’ll use for about 75% of the finishing industry’s standards. For most job shops and small manufacturers, these metal preparation techniques are all you will need.

But what if you’re approached by a customer with a specific powder coating requirement that is quite demanding? Is your basic pretreatment process going to be enough? Probably not. 

If high-performance and long-lasting powder coating results are important to you and your clients, the only way to deliver those results is by upgrading your pretreatment process.

Powder Coating Standards & Testing

When talking about standards, your customers will have one main question when it comes to the coatings you apply:

How long and how well does the coating protect the metal?

To find the answer, you have to test.

The primary industry test that measures how your coating (and, indirectly, your pretreatment process) performs is called a salt spray chamber test. During this test, coated samples are placed in a salt spray chamber where the samples are periodically sprayed with warm saltwater. These tests can last up to thousands of hours.

Typically, these painted samples have an “X” scribed or cut into the middle of the panel, so that bare metal is exposed directly to the salt spray. The objective of the test is to see how much rust or paint blistering occurs at the scribed X. The test item fails when rust or blistering creeps beyond a set distance from the X-shaped penetration through the coating. This failure measurement is usually ¼ inch, but in extreme cases where coating performance must be carefully monitored, the failure measurement can be small as 1/8″ (examples include some high-performance or military grade coatings).

All salt spray chamber tests will include a stated hour requirement and a failure definition. As an example, it might be that the X-scribed sample must withstand 500 hours of salt spray with no more than ¼ inch of creep. The test will then be run until the sample successfully reaches 500 hours or until the rust or blistering creeps more than ¼ inch from the X. If the sample fails before 500 hours, the lab will let you know how long the sample was tested before the failure point was reached. Typically, these results are provided in 25-hour increments. So, a failed sample might be rated at 425 or 450 hours. This is a standardized way of rating performance because most labs check samples only once daily.

Before performing a salt spray chamber test, check your customers’ specifications for the measurement and the standard. There are different standards used by the American Society for Testing and Materials (ASTM) that refer to salt spray hours, so make sure you get the correct documentation from your customer if you must pass a specific test.

Where Can You Get A Salt Spray Test?

Most manufacturers and job shops have their powder vendors perform salt spray tests. This is typically done free of charge for established customers. Of course, larger powder customers get preferential treatment when booking tests, so if you’re in a crunch, you can contact an independent lab that will test your samples for a fee. It isn’t uncommon when bidding on a large contract to use an independent testing lab to quickly demonstrate to a potential customer that you can meet their finish requirements.

Remember, 500 hours is about 21 days, so passing that test will require the sample to be in the salt spray chamber for three full weeks. A 1000-hour test takes a month and a half.

Some larger consumers of powder coated components, like John Deere and the U.S. military, have their own labs with salt spray chambers that they use to certify qualified suppliers. Before submitting your samples to one of these organizations, make certain the samples are representative of your capabilities and have been prepared correctly.

Pretreatment Guidelines For Coaters

Below is a general pretreatment guideline. Use it to determine the number of salt spray hours your current process can achieve and what to consider when increasing your coatings performance. This is only a guideline and doesn’t replace a salt spray chamber test.

  • 50 hours salt spray: as a reference, this can be achieved using clean metal (free of obvious rust, oil, grease, dirt, or other visible contaminants) with a single coat of a typical industrial enamel wet paint
  • 250 hours salt spray: clean metal with a single coat of a typical polyester powder paint
  • 500 hours salt spray: clean metal treated with a phosphate/non-phosphate chemistry, which is either dried in place or removed in one rinse step, followed by one coat of polyester powder paint
  • 750 hours salt spray: clean metal that is washed, rinsed, then treated with a phosphate /non-phosphate dry-in-place chemistry/sealer, followed by one coat of polyester powder paint


  • Clean metal coated with one coat of zinc-rich powder primer and one coat of a polyester powder topcoat
  • 1000 hours salt spray: clean metal that is washed, rinsed, treated with a phosphate/non-phosphate chemistry, rinsed again, sealed (or rinsed a third time, often using water that has been treated to remove minerals), followed by one coat of polyester powder paint


  • Clean metal coated with one coat of zinc-rich powder primer and one coat of a polyester powder topcoat
  • 2000-3000 hours of salt spray: clean metal that is washed, rinsed, rinsed a second time, treated with a phosphate/non-phosphate chemistry, rinsed a third time, sealed, rinsed a fourth time using deionized/demineralized water, followed by one coat of zinc-rich powder primer and one coat of a urethane powder topcoat

The greater the performance requirements for the coating, the more steps you need to take. Also, once you get to a 750 hour or greater standard, you will almost certainly need an automated pretreatment system with a powered conveyor moving parts through it at a fixed rate. While you can achieve 750 hours with a manual wash, it will take multiple chemicals and a good system that can switch between them without contamination issues.

Many smaller shops use a zinc-rich epoxy powder primer under a polyester topcoat to get good salt spray results without an expensive multi-stage pretreatment system. The only downside to this approach is that you must powder coat your parts twice. Properly applied and cured epoxy primer on clean metal can improve salt spray test results by 500 to 750 hours. 

Pretreatment Disposal

Increasing your pretreatment capabilities is great for your coating performance, but it adds a new problem to your shop – waste disposal. One of the main concerns we hear from customers who want to pretreat to a higher standard is that they’re worried about getting in trouble for violating waste disposal regulations. We’re constantly asked, “how do I get rid of the pretreatment waste?” The answer is to ask your local authorities.

Pretreatment waste can be costly to manage and mishandling your waste can have very real consequences for the environment. Here’s a list that should help save you from incurring penalties from local, state, and federal environmental agencies. Following these guidelines also protects your local drinking water supply from being contaminated by heavy metals or other harmful waste. Always check with local authorities BEFORE developing a waste disposal plan.


  1. Don’t dump the waste into a lake, pond, river, creek, or other water source!
  2. Don’t dump the waste down a storm drain!
  3. Don’t dump the waste into a ditch or onto the ground!
  4. Don’t dump the waste into your septic tank!
  5. Don’t flush the waste down the toilet!


  1. Do check with your local city and/or county water authority. If you are on a sewer system, they should have guidelines on what can go into the sewer system. Ask for permission – not forgiveness – in this situation. You may have to get some waste samples tested at a lab for their approval.
  2. Do check with your chemical supplier to get suggestions on the best way to dispose of the waste created.
  3. Do contact a local industrial plumber. He may have some good suggestions from other companies he has worked with in the area.
  4. Do contain the waste water in a basin or sealed concrete barrier. It may be possible for the water to evaporate and you can shovel the waste into a drum for disposal if you run a small operation.
  5. Do check local waste disposal companies and ask what they require to pick up waste water in highly restricted areas.

As we’ve pointed out in this article, there are very real costs associated with producing powder coated finishes that offer the highest levels of performance. For some shops these costs will be prohibitive, but for many others they represent a reasonable price to pay for the opportunity to attract and retain lucrative accounts. Because not all shops are equipped to provide 1000-hour finishes, the amount of competition for those jobs is smaller, and the profits are typically larger.

Which Pretreatment Option is Best For Your Business?

Adding steps to your pretreatment process can greatly expand your clientele, as many larger construction and military projects require exact coating standards. Showing you can meet those standards allows you to bid for more work at a higher rate. On the other hand, especially for smaller shops, the extra time it takes – not only to produce the next part but to manage the waste – may impact the bottom line. If you are wondering whether a multi-stage pretreatment process is right for your business, check out our Resources page for more information or give us a call and consult with one of our systems specialists.

Powder Spray Gun Maintenance Manual & Common Replacement Parts

One of the biggest issues we see with existing powder coating systems is the lack of routine powder spray gun maintenance. When we ask about their maintenance routines, we find many operators and managers aren’t sure how to care for their powder guns and powder application systems. They also don’t have common replacement parts on hand and often don’t know where to identify them in their manuals.

If you’re one of those people, we can help!

Let’s start by covering some basic maintenance steps and then I’ll provide a list of replacement parts for three of the most common spray systems. To make things as easy as possible, at the end of the article I’ve also included the names and parts numbers for all the major powder gun manufacturers, so you can get the right part when you need it.

Powder Gun Maintenance: Grounding

OK, so grounding issues may or may not be related to gun maintenance, but they are a common cause of finishing system headaches. If you’re using a good quality powder and a large portion of your sprayed powder is falling to the floor or getting drawn into the exhaust filters without sticking to your parts, it may be due to poor grounding. A good ground is something you usually don’t have to worry about with a new system, but over time the system becomes less efficient without vigorous preventative maintenance.

Loss of ground can cause major problems with your finishing process, but, with a little bit of preventative care, you can avoid grounding issues and keep your transfer efficiency high. (For more information about grounding, click here.)

What causes grounding problems? They can be due to coated hooks, coated racks/hanging bars, poor grounding wire contact, gun issues, or operator error.

  • Coated Hooks: Hooks start losing their ground after about 4-6 uses. You should either clean them or replace them frequently enough that your parts maintain a good ground. Baked-on powder can be removed using heat, chemicals, or mechanical action like blasting or grinding. Your hooks need immediate attention if you are getting popping sounds and small electrostatic arcs from the hooks to the racks or hanging bars.
  • Coated Racks/Hanging Bars: Treat them the same as hooks. After 4-6 times through the coating process, you should grind, brush, or blast the excess powder off the rack or bar at the hook attachment areas or burn off the coating build up using a burn-off oven. Hanging bars can sometimes be cleaned using chemicals, but, because of their size, it is almost impossible to clean racks without burning off the overspray or removing it mechanically.
  • Check Your Grounding Wire: The grounding wires get close to the shop floor at the point where they attach to your grounding rod. It’s easy for them to get run over by racks and forklifts throughout the workday. Sometimes there is a break in the wire that is not easily visible through the sheathing. Use the back-up grounding wire provided with the spray gun system and compare results. If you are only using the grounding wire supplied with the system or you have attached a ground wire to equipment that is bolted to the floor, you can improve your ground immensely by using an 8’ grounding rod (preferably copper) and a relatively short run of grounding wire. Bury the rod right next to the booth. You can also get a much better ground using thicker wire and better clamps to attach to your racks or conveyor. Although there isn’t a “perfect” gauge size for powder system grounding wires, bigger is better–think jumper cables instead of speaker wire. The same goes for clamps–don’t cheap out.

Pro Tip: In some areas you can measurably improve your ground by routinely pouring water into the hole where the grounding rod was buried. Slowly pour water around the grounding rod until it begins to overflow from the top of the hole. This may take only a few ounces or could take over a gallon.

  • Check the Gun: If everything else checks out but there is still a lot of powder falling to the floor, getting sucked into the filters, or accumulating on the operator, make sure the tip of the powder gun (the one that has the electrode) has not been dropped or otherwise damaged. At normal settings, you should be getting some wrap coverage on the back of your parts and you should be able to feel the electrostatic field with the gun trigger pulled and your arm close to the tip of the gun. If you don’t feel your arm hairs raise when you squeeze the trigger, the probe or the main electronics could be damaged or not making contact somewhere.
  • Check Yourself: People can get so used to doing a task that they assume they’ve done it correctly without checking. Even the best operators can forget to clamp on the ground wire. If you suddenly see a decline in system performance, make sure the ground wire is attached and the gun settings weren’t changed by accident.

Powder Gun Maintenance: System Cleaning

Keeping your gun system clean should be part of your routine maintenance. A few different types of system cleaning/flushing should be done on a regular basis to keep your gun in good shape.

  • End of Day: If you’re NOT changing colors for the next shift, flushing the powder through the hose is a basic end-of-day cleaning routine. To do this, pull the pick-up tube out of the powder box or disconnect the hose from the hopper and pull the trigger until no powder is discharged. Remember, powder in the lines can lead to big start-up surges and possible impact fusion (slightly melted powder) sticking in the corners and hard to reach areas.
  • It’s also a good idea to wipe down or blow off the gun/unit every day, which will help keep powder from building up on the displays and possibly fouling the electronics. While cleaning up, check out wear items for possible replacement.
  • Color Change: Like above, flush the old powder and lightly clean all components. In addition, break down the gun and either shoot a foam earplug through the powder hose to scrape powder out of the line or change hoses. Investigate wear items for possible replacement (see below).
  • End of Week: Repeat your color change clean but take extra time looking at all the places where powder is building up. Use cotton swabs, like Q-Tips, and isopropyl alcohol to clean those hard to reach spots that are not blown out adequately by air. Check all wear items and replace if needed. Blow out the gun stand, especially in the vibratory box crevices. Sweep around gun area. Finally, wipe down both the display and the gun with isopropyl alcohol.

Wear Parts and Extra Hoses

Wear parts and hoses are the main extra items you need in order to keep your system running (barring an electrical component failure). Powder coating media is somewhat abrasive and there are a couple areas that take most of the punishment in manual systems.

Venturi Sleeve: The most common wear part is the venturi sleeve. This is the white plastic nozzle that the hose assembly hooks up to on the powder pump. Different manufacturers call it by different part names and numbers but I’ll refer to it as a venturi sleeve. The sleeve takes the powder and condenses it for travel up the hose to the gun. It accelerates the powder by condensing the volume of air, so the sleeve naturally gets hit with pressurized particles. The wear from the propelled powder hollows out the tube and sometimes cuts grooves into the sleeve. If it goes on for too long, the powder pump starts to become less efficient and the gun will surge.

Before that happens, you should check the sleeve every time you do a color change or end-of-week cleaning. This is a very inexpensive part, so it is worth having a couple around as replacements.

Text Box:

Powder Hose: The next replacement item you’ll want on-hand is an extra powder hose. Hoses can get run over, cut, pinched, and damaged by just about everything that takes place in a typical shop environment. I always recommend keeping at least one or two precut hoses available for quick replacement. Another use for extra hoses is quicker and more thorough color changes. If you only have three main colors, then there are advantages to having three hoses to insure less powder contamination and quicker color changes. If you clear coat, I highly recommend a hose dedicated solely to clear coat. Hoses also need a couple fittings which are wear items themselves. All manual guns have connections for the gun and the pump at opposite ends of the hose.

Powder Gun Tip: The last common replacement item I recommend always having on-hand is an extra gun tip. Tips take a lot of punishment from both the powder and the shop environment. With a lot of powder use, the tips can start to warp and cause application issues. Also, if the gun is dropped (and it will be), most likely it is going to land on the tip. Fortunately, the electrode is usually protected.

Where can you find replacement parts?

The “big three” professional-quality powder application gun manufacturers, Wagner, Gema, and Nordson, use different names and catalog numbers for the wear parts I’ve mentioned above. To help you find the part you need quickly, I’ve included the names, descriptions and part numbers you’ll need when ordering the parts for your particular powder gun system.

Venturi Sleeve

Manufacturer & Model Description Part #
Wagner Sprint X Annular Gap Collector Nozzle 241225
Gema Optiflex 2 Insert Sleeve 1006 485
Nordson Encore XT Throat 1095910


Manufacturer & Model Description Part #
Wagner Sprint X Powder Hose 11mm 2307502
Gema Optiflex 2 Hose, Antistatic, 10mm 1001673
Norson Encore XT 11mm Powder Hose 768176

Hose Connectors to Gun

Manufacturer & Model Description Part #
Wagner Sprint X Hose Take Up, D10-12, Complete 2322761
  O-ring 9971364
Gema Optiflex 2 10mm Hose Connection 1002 030
Norson Encore XT Kit, Hose Adapter 1106 200
  O-ring 940157

Hose Connectors to Pump

Manufacturer & Model Description Part #
Wagner Sprint X Conductive Nozzle 241476
  Union Nut 241466
  Sealing Ring, Conductive 9974023
Gema Optiflex 2 Hose Connection 1006 531
  Threaded Sleeve 1006 483
Norson Encore XT Throat Holder 1095898
  Nut, Pump 1095914

Gun Tips

Manufacturer & Model Description Part #
Wagner Sprint X Fan Spray Nozzle, Complete 2321976
Gema Optiflex 2 Flat Jet Nozzle NF20-1007934
  Threaded Sleeve 1007229
Norson Encore XT Nozzle, Flat Spray 1081658
  Nut, Nozzle 1081638

These are the main items I would always keep at your facility to prevent a lengthy production stoppage due to a simple powder gun issue. If your budget allows, a secondary gun system is always good to have as a back-up. That way you always have at least one gun in operation if the other needs to be sent off for major repair.

For more information about the different powder gun systems, check out my comparison article here. If you’d like even more information about powder coating in general, along with equipment guides that explain what you’ll need to get professional quality powder coated finishes, check out our Resources page.

Specialty Finishes with Powder Coating

During my training sessions, I get a lot of questions about three-step specialty finishes. Let’s look at the three-step process, and I’ll provide practical information and tips that should be helpful for all coaters. Knowing how to do a three-step finish can improve the quality of your work – even if you never attempt this specific technique.

Although there are other high quality products on the market, I’m going to highlight two separate coatings systems that I have personally used: Tiger Drylac and Prismatic Powders.

Metal Preparation

Both coatings manufacturers require a clean part that is free from oils, waxes, surface rust, scale, and other contaminants or soils. Most custom powder coating shops satisfy this requirement by blasting the part with sand or some other type of blast media such as garnet or glass. Which process you use depends on how rough your metal is and how much detail you want the coating to highlight.

For example, if you have a steel wheel that has been in the back lot for a year, you are going to have to use an aggressive media to clean all the rust and debris. However, if you are using a laser etched aluminum wheel, you will want as fine a media as possible. For extreme detail, you may just want to use a chemical cleaner or acid-etch so all the surface detail will come through the finish. (For more information about what you need for blasting, click here.)

Chemical pretreatment is frequently used to prepare metal for coating and is sometimes just as necessary as blasting. Because the surface is so slick, aluminum parts and wheels can benefit from a cleaner/sealer that will promote adhesion of the coating. A cleaner/phosphate solution over steel can give additional protection if the coating is ever scratched or chipped in the field. (For more information about pretreatment, read our pretreatment primer.)

Pre-baking the part is usually the next step. This ensures all the water from pretreatment is removed, but drying the part isn’t the only reason pre-baking can help your finishes. If you are coating cast wheels and parts, the casting sometimes traps gasses in the metal. These gasses are only released when exposed to high heat – like the powder curing cycle. When trapped gasses come out during the cure, it creates bubbles and pinholes in the finish. (link to pinholes and outgassing article) By heating the parts prior to coating, the gasses can be released without damaging the finish.

Other metals such at hot-rolled steel, galvanized, or galvaneal can also have gas and oil trapped in them. Steam cleaning might work, but if you still notice oil and bubbles in your finish, start pre-baking your parts. This will help remove the hidden contaminants that can resurface as the part is being baked.

Tiger Drylac Candy System

The Tiger Drylac system recommends a three coat process. The chrome primer, the candy transparent coating, and then the clear topcoat.

Tiger Drylac provides three different primers that can be used, and each will give different end results depending on which color you choose. Of the three, the Kromezone primer seems to be the most reflective. Tiger recommends a full cure cycle on the primer of 10 minutes at 392° F metal temperature.

The next two steps are the tricky part! After the primer has been applied and cured, the candy color is applied at about 2 mils and cured for 5 minutes at 392° F metal temperature. This is not a full cure but rather a pre-gel cure. This helps intercoat adhesion between the candy layer and the final clear layer.

The final coat is the clearcoat and should be sprayed lightly over the candy coat. The cure time for the Tiger Drylac Clear Series 38/00001 is 15 minutes at 392° F metal/substrate temperature.

The last two steps usually require spraying onto a hot part, which can be challenging. Unless you are careful, spraying hot parts can lead to heavier coating thicknesses than you may want.  Anytime the part is above 170° F, powder will melt as it starts to contact the metal or the coating that has already been applied to the metal. This can be a good thing, as it will help with deep corners and tough angles that are normally difficult to get powder to electrostatically stick to. However, it can also hurt you by building the final coat too quickly. During this stage remember that the powder output might have to be turned down or your movement may need to speed up as you go through the spray pattern in order to keep the dry mils around 2. You can always just let the part cool down to 150° F or less before spraying to avoid potential issues.

Prismatic Powder Illusion System

The Prismatic Powder system is like the Tiger Drylac system with a few exceptions:

  1. The Super Chrome primer cure is higher.
  2. A one-coat system is possible if the metal is shiny to begin with.
  3. A clear topcoat is not required in some series (PPS series).
  4. The Illusion system can be used with various gloss topcoats.

When using the Prismatic Powder, the first coat can be a very highly reflective coating they call Super Chrome. This product can be cured at 400° F but seems to work best at about 450° F metal temperature for 12 minutes. They also recommend when you apply the coating to set your kV control to 45. Higher voltage could cause the metallic content in the coating material to develop unusual patterns as it is applied.

The Illusion series from Prismatic Powder has an uncommon gel time which may take you some practice to master. The instructions state the gel time is 2 minutes after the powder flows to a gloss at 400° F. What that means is you set your oven to 400° F and keep an eye on the parts as they cure. As soon as the powder melts to a gloss, start a 2-minute timer. When the timer is done, pull the part out and let it cool to 150° F.

Watch your parts carefully during this process. The metal thickness of your parts affects when the powder starts to uniformly melt. If you cure the gloss too much, you risk de-lamination of the final clear coat. This is a perfect example of why you should always test on some scrap metal or broken parts to get your process debugged before trying it on production parts

After this Illusion Purple basecoat cooled down, I applied a clear. I used Casper Clear, a low-gloss clear topcoat. The application was about 2 mils at a 35 kV setting.

The reason for the lower setting is because the part is somewhat insulated by the previous two coats, so it’s better to treat it like a repaint. The reason you turn down your kV setting for repaints is so you don’t build up too much charge on the part, which can repel the powder in places.

After spraying a light coat I put this wheel back in the oven at 415° F for 25 minutes. The data sheet states 400° F part temperature for 10 minutes. In order to reach that temperature for that time, the wheel had to pre-heat for 15 minutes so it would reach 400° F. Then it remained in the oven for 10 minutes to get the correct cure. I set the oven higher because it would have taken the wheel longer to get to 400° F (30 minutes or longer) if I had set it at 400° F. This because part temperatures climb very, very slowly once their surface temperature is within a few degrees of the air temperature inside the oven.

Here is an example of a header we did with a neon green Illusion system and the same low gloss topcoat.

Many effects can be produced using multi-stage powder coating but the key steps are always:

  1. Proper metal preparation
  2. Correct application technique
  3. Detailed curing plan
  4. Developing a repeatable process

With any coating process you perform as a professional, check for proper cure and adhesion before releasing a part to your customer. Remember, your reputation can be severely damaged by poor quality control and negative reviews can be tough to counter.

If you found this article helpful, our articles on outgassing/pinholes and pretreatment may help you troubleshoot your finishes. For even more tips and tricks, equipment guides, and much more, check out our Resources page.

Powder Coating Gun Application Issues – Powder Surge

One of the most asked questions during my training sessions is,” How do I keep powder from surging out of the gun?”

First, let’s talk about how the two most common types of manual powder guns work and what you should be looking for to prevent powder surges.

Box-Fed Powder Guns

How it works: When you use a box-fed powder gun, you set your box of powder onto the vibrating pad and insert the pick-up tube into the box. The pick-up tube releases a small amount of air near the tip to help fluff the powder so it can be easily transferred to the gun. The pick-up tube works with the vibrating pad to aerate the powder and keep it from clumping together.

What to look for: When properly adjusted, the powder should have a small volcano appearance around the spot where the pick-up tube goes into the box. There should not be enough pressure to shoot powder out of the box, but enough to keep the powder in a loose state and provide a consistent, smooth flow of powder to the powder gun.

Hopper-Fed Powder Guns

How it works: Hopper feed systems typically use a cylindrical stand-alone hopper container that you pour the powder into and close the lid. Air is supplied to the hopper, and the compressed air bubbles up through very small holes in a membrane located at the bottom of the hopper.

What to look for: When properly adjusted, the powder should look like boiling water when you peek in the container. If you stick your fingers into the powder, it should feel like silky smooth baby powder.

(For more information on the differences between manual box-fed and hopper-fed guns, check out my earlier article here.)

Top Five Reasons for Powder Gun Surging

1)  Too Little Air

It’s possible that not enough compressed air is being supplied to the hopper bottom or the pick-up tube tip. The air supply may have been disconnected or the line may be obstructed, but usually the problem is due to the gun not being properly adjusted. 

How to Troubleshoot: There is a small adjustment nut on the side of the unit that regulates the air flow going to the hopper bottom or tube tip. Adjust the nut up and down so that you get the effect described above (boiling water for hopper-fed or small volcano effect for box-fed). Remember, different powders have different densities, so you may have to turn it up a bit when using white primer powders or down a little when spraying something like red gloss topcoat powders.

Also, check your air supply and make sure you have a consistent 60-80 pounds of dry shop air going to the powder unit. If the air pressure is jumping up and down – perhaps because you have multiple pieces of equipment using the same compressor – consider installing a dedicated compressor for your finishing process.

2) Humidity

Moisture may be preventing the powder from flowing smoothly. If you have a box-feed system, bringing a fresh box of powder from an air-conditioned storage room to the hot, humid, plant environment can cause problems. You will get humidity condensation on the inside of the box. This makes the powder very difficult to fluff and it won’t be properly picked up by the tube, making it much more likely to surge. You can also have problems if you warehouse your powder in a damp or hot/humid environment (like the corner of the shop). Over time, exposure to moisture will cause the powder to clump up into large chunks.

How to Troubleshoot: First, if you are storing your powder in the shop, move it. Use a clean, air-conditioned storage room to warehouse your powder. Bring a box of powder out about 2 hours before you need it, open the plastic bag, and let it acclimatize to the shop air before using.

3) Water or Oil In The Air Lines

Moisture in your compressed air lines can cause powder to clump. In addition to the problem described above, the situation gets even worse when the air supplied to the gun unit has oil or water in the lines. Since the air is going through the gun and touching the powder, water propelled through the gun will cause the gun to clog, sputter, and surge powder on to your parts. The compressed air can also contaminate the finish by bringing along any oil or contaminants it encounters as it travels through the air lines.

How to Troubleshoot: Be sure to have a good air dryer or a multi-stage air filtration system installed in the system prior to the gun, especially if your air lines usually carry moisture or oil.

4) Worn or Clogged Equipment

Parts of the powder unit can wear down due to the abrasive nature of powder and cause the gun to perform poorly. The first place to check is the venturi nozzle sleeve. This is a plastic sleeve that periodically needs replacement.

Check the venturi nozzle on your powder gun often for wear and replace when needed.

How to Troubleshoot: Check the venturi nozzle sleeve to see if the powder has cut grooves into it, or if the orifice has changed from round to oval. If either is true, replace the sleeve.

Powder can also start to stick to wear surfaces in the gun system, especially in hot environments. When powder sticks and hardens, it is due to something known as impact fusion. Normally, compressed air will clean out most areas in the powder unit, but not when impact fusion occurs.

How to Troubleshoot: Q-tips soaked in isopropyl or rubbing alcohol are the best tools for removing powder residue that has partially gelled due to impact fusion.

5) Improper gun settings for the hose or particle size of powder

An improperly adjusted gun can cause surging. Powder gun units have an adjustable ratio of powder to air that is supplied to the gun through the powder hose. If this ratio is off, powder surging can occur.

How to Troubleshoot: The first thing to try is to increase the amount of powder to air, which fill the powder hose and keep continuous powder moving. This will help with intermittent surging. Different powder systems have different adjustments for this, so consult your gun manual or talk to your powder supplier’s technical representative.

Some powders are heavier in density or larger in particle size. For example, white primer is more dense than a red gloss topcoat powder. If you get a big burp of powder when you first trigger the gun after switching colors but no more surging, you may need to reduce the amount of powder to air.

Remember to Maintain Your Change Logs

Every time you make a change to your powder settings, make sure you update your log book. When troubleshooting your process, only change one thing at a time and record the results. This can help you isolate the cause of the problem and more quickly diagnose problems in the future.

Need Any Help?

Reliant offers multiple services to help your finishing operation run smoothly – from troubleshooting to training, installation and more. Call us today.

Powder Coating Outdoor Equipment Can Improve Your Business

Powder Coating Outdoor Equipment Can Improve Your Business #reliantfinishingsystems

Powder coat playground equipment to make it durable

Outdoor equipment is one of the largest and fastest growing markets for powder coating.  This is no surprise, since powder coating outdoor equipment makes good sense for both equipment builders and their customers.  From playground equipment to sporting goods, powder coated outdoor products last longer and perform better. In this article, we’re going to look at how powder coating systems reduce costs and produce a better outdoor product.

Powder Coating Versus Wet Paint

Almost all metal products that are going outside need to be finished in one way or another. Preventing rust is one of the main reasons that metal coatings were invented. Properly prepared, a finished metal object will outlast an unpainted one. So, why is a powder coating system better than wet paint methods for outdoor equipment? The simple answer is that powder coating is cheaper to apply and typically lasts longer.

Powder Coating Is Cheaper To Apply

Just one powder coating application is as strong as many coats of wet paint #reliantfinishingsystems

Just one powder coating application is as strong as many coats of wet paint

A single coat of powder is just as scratch-resistant and durable as a multi-stage wet paint application. Yes, automotive paints can last as long, but those types of wet polyurethane are coatings are expensive and require more steps.  First, you have to properly prepare the metal, then prime it, then apply a two-component color coat, and finally apply a clear topcoat. The material cost alone is usually four times that of powder – to get a similar result.


Graph showing 75% relative savings on material costs in powder coating system versus wet paint

Powder coating raw materials for metal parts costs 25% of wet paint methods

Not only are raw materials cheaper using a powder coating system, but there’s less handling and preparation of the parts! Powder coating is much easier to apply than wet paint. Since powder is simpler to apply, painters will produce fewer flaws, such as sags and runs.  They will also need less practice. The average cure time for a metal part is about 20 minutes to bake and 10-15 minutes to cool, so you can typically handle, assemble and pack your parts much faster than when using a wet paint method.

Outdoor Powder Coating Lasts Longer

Furniture with Powder Coating Outdoors

Powder coated outdoor furniture will last much longer and continue to look nice

What about durability benefits in powder coating outdoor equipment? Since rust is usually our primary concern, what kind of resistance to corrosion does powder coating provide and for how long?


Checking For Durability With Salt Spray Testing

Examples of Salt Spray Testing

Examples of salt spray testing

Perhaps we want to determine how resistant a coating is to corrosion.  We can use a common industry test called Salt Spray Testing.  This simulates extreme outdoor conditions by spraying a coated part with pressurized air and saltwater.  The salt spray test is used to determine how long a finish might last before rust and corrosion compromise its integrity.

Salt Spray Testing Method

  1. Start with a coated sample part.
  2. Scratch the coating all the way through to the metal in an X pattern.
  3. Blast the part in a testing chamber with 5% or higher salt spray solution.
  4. Time how long you’re spraying.
  5. When rust has reached 1/4″ or more from the scribed point, stop spraying. How much time has elapsed?
  6. Compare this time to other coatings’ times.
Salt Spray Testing results on three coating methods
Process Avg Salt Spray Hours
1) Grinder, solvent wipe, liquid enamel 50
2) Grinder, solvent wipe, powder coat 250
3) Blast, pressure wash, phosphate, powder coat 1000

Here’s some results from different coating processes. The powder coated sample –
with no other preparation or special treatment – lasts on average five times longer than the same object finished with a common wet paint.

Salt spray testing is a controllable lab test that simulates tough conditions to determine overall finish performance when powder coating outdoor equipment. However, many variables will affect true performance.  This test gives only a rough estimate of how resilient any finish is. If you use powder coated equipment on the Florida coast, 100 hours could equal one month.  But if you are in Arizona 100 hours could equal 15 years. Climate, local weather patterns and equipment usage all play a part in how long your finish will last, but the more salt spray hours your part takes to rust, the better.

Customer Example: Swapping To Powder Coating Can Help Your Outdoor Product Business

Joe’s Trailers is a sample business that wants to provide its customers with durable products. Joe’s Trailers can show how a typical small manufacturing business can easily change its methods to get better results from powder coating outdoor equipment.



Joe’s Trailers started with this wet paint process (Process 1 from the Test Results above)

  1. Grind the welds down and the mill scale off the metal
  2. Wipe the trailer down with acetone
  3. Spray an industrial enamel wet paint

When Joe tested a panel that was coated using this wet paint process, it got these results:

The panel took 50 hours to get 1/4″ creep of rust on the scribed mark

But, Joe sometimes needs to store the trailers outside for a long time.  He also sells them in areas where road salts are used.  The wet paint finish on the trailers isn’t lasting, and customers complain.

Joe responds to customers’ concerns

Outdoor Powder Coating On Trailers

Powder coating can help heavy wear products – like trailers – withstand day-to-day use and extreme conditions

Joe decided to purchase a powder coating system to increase quality and reduce material costs. He kept the same preparation. But with his new powder coating oven, he got 250 hours of salt spray before there was a ¼ inch of rust creep with the powder coated finish (Process 2 from Test Results above).  This was five times longer than with his wet paint technique. That’s a level of protection so thorough that no trailers rusted in his storage lot while they were stored outside during the off-season.

Joe expands his business to a new kind of customer, increasing profits

Joe got a call from an upscale landscaping company located near Chicago. This customer wanted his trailers to last longer than the current trailers he bought from a local home improvement store. The customer couldn’t use ugly, rusted trailers in his service area because of his demanding clients, and the winter road salt quickly corroded his trailer fleet.

Joe decided to make some improvements to his powder coating system.  He already had a powder coating spray booth and powder coating oven.  He decided he could improve his pretreatment.  Joe invested in a blast booth, and a special pressure washer that generates steam.

Now his process is

  1. Blast the welds and scale, which is quicker than grinding
  2. Apply cleaner, rinse with water, steam with phosphate, and rinse
  3. Coat with powder in a powder coating spray booth
  4. Bake powdered parts in a powder coating oven

This new piece lasted 1000 hours in the salt spray testing chamber before the rust creep reached 1/4 inch (Process 3 from Test Results above).  Because the finish was so durable, Joe was able to offer a four-year rust warranty.  He increased his prices to cover labor and equipment.  He even got more profit from these upgraded trailers than his basic trailers.

Consider powder coating systems for outdoors products

Switching to a powder coating system can greatly increase coating performance and durability.
Consider it especially for products that must suffer the wear and tear of outdoor use. Products will last longer in outdoor conditions. Business costs like product storage damage, customer returns, and premature warranty issues will be reduced. Finally, higher prices can be charged for better products.

Agriculture Equipment with Powder Coating Outdoors

Powder coating can provide performance and cost benefits across a number of markets

This example has focused on trailers. Remember that these benefits apply to any outdoor product, here’s some ideas to get your creative ideas flowing:

  • Handrails, fences, and playground equipment.
  • Automotive parts like truck accessories, and farming machinery
  • Seasonal items like fishing and marine equipment, deer stands, and much, much more.

When taking on a new powder coating project, remember to ask your customer what they need. Get the correct coating procedure in place to meet their expectations. Use your vendors as resources to help you tailor your powder coating equipment, powder, and pretreatment methods to exceed your customers’ needs.

Reliant Finishing Systems provides fully integrated powder coating equipment. Whether you want to supplement your existing system, or install a complete finishing line, feel free to call us today about any of the following:

What Coaters Need To Know About Powder Coating Particle Size

Powder Coating Particle Size

When troubleshooting your powder coating, you may find specific issues caused by the powder coating particle size.  Unfortunately, while a lot of information is available on this subject, most of it is very technical in nature and doesn’t explain the real-world production issues that are caused by improper powder coating particle dispersion. If you’re looking for practical knowledge to improve your results, these basic guidelines will help you identify finish problems related to particle size.

How Powder Manufacturing Creates Different Particle Sizes

When powder is manufactured, it is combined in a giant mixer, melted, cooled into a big sheet, and then broken up into pieces. It is then ground and sifted through a screen to the specific particle size the powder manufacturer has designated.

During the manufacturing process, there are three types of particles produced: standard, fine and large.

Standard Particle: This particle size is what the manufacturer wants to put in the box. The size range of the particle is very tightly controlled, Standard particles will produce the best possible finish and generate proven, heavily tested results.

Fine Particle: This particle is very small and could cause some finishing issues like picture-framing if there was too much allowed to be packaged. The fine powder particles build up at a different rate from the standard particles, especially in areas of “wrap”, and cause unacceptable variations in the finish.

An excessive amount of fine particles can also contribute to application guns spitting or sputtering because fine particles can be fluidized more easily than standard particles. During the grinding process, powder manufacturers have suction hoses above the grinders to catch a lot of these fine particles that would not otherwise be sifted out. Fine particles, by nature, float in the air more than standard particles. That’s why the suction hoses can catch most them.

For more information, visit this powder troubleshooting guide from Tiger Drylac. Specifically, on page 16 of the document, they show a good example of “picture framing” due to excessive build-up of fine powder.

Large Particles: This particle is too big to pass through the final filter screen. Sometimes manufacturers will re-grind these large particles to get good powder out of them, but sometimes they just throw them away. If large particles wind up in a box of powder because of a manufacturing error or flaws in the screening equipment, they do not hold a charge as well as a standard particle and will most likely wind up on the floor of a spray booth. In addition to decreasing your transfer efficiency, an excessive number of large particles can cause the part surface to be more susceptible to powder loss during pre-cure handling, resulting in thin spots that can’t otherwise be explained. (to learn about Transfer Efficiency, read more here.)

Some fine particles and some large particles will wind up in the powder box regardless of the process being used. The powder coating manufacturer has a particle size distribution analysis machine to measure samples of powder and see how much variation the powder particles have. In a normal box of powder, there shouldn’t be enough large or fine particles to cause problems. 

Typical distribution of powder coating particle size in different powders.

What Is The Powder Coating Particle Size Supposed To Be?

There is no standard answer, because each different type of powder has specific particle size requirements due to the special effects components or pigment used in its formulation. Regardless of size, the key to good powder is generally to have as tight a particle size spread as possible.

Typically, smaller particles carry better charge and fill voids in the coated surface better, but they do not penetrate Faraday Cage areas well. To get a powder that both holds a charge well and creates an even distribution, the manufacturer will usually decide on a happy medium for the average particle size based on laboratory and sample production testing.

Here is an example of a graph of a sample of powder:

Powder Coating Particle Graph

As you can see, there is a curve to the distribution. That means that some particles are a little bigger and some are a little smaller. The more peaked the curve is, the more reliable your finish should be. If the curve is flattened and you have a lot of fine particles or large particles, you could have more finishing problems and/or worse transfer efficiency.

Powder Coating Issues Related To Powder Particle Size

Powder coating particle size discrepancies can create issues with the quality of your finish and can increase your applied cost. These problems can be especially troublesome in a production environment, especially if you use a reclaim system as opposed to spray-to-waste. If you don’t reclaim and reuse spent powder, the particle size in the box is all you have to worry about. If you reclaim your powder, then you need to consider powder particle size even more closely. It’s likely you will have some adjustments to make to achieve your best finish.

“Virgin” powder, straight out of the box, will typically be more conductive than reclaimed powder. The reason for this is that there are some large particles, as well as some inert particles that were part of the original powder formulation. These particles are most likely to fall off the part and get recycled back into the powder supply. As you use more reclaimed powder, this percentage grows and your powder does not adhere as well to the parts. Most powder experts recommend a ratio of at least 60% virgin powder to 40% or less reclaimed powder to get acceptable finish results.

Remember, the fine particles will usually adhere to the part or get stuck in the exhaust filters of the booth, so it’s mostly the heavy particles (that are the least attractive to the parts) that get recycled. Some particles, even those of ideal size, will stick together due to contamination or partial gelling in hot environments. These clumps of small and standard particles act like large particles and don’t stick to the parts during spraying. It is important to hand filter all of your reclaimed powder or use an automatic sieve to filter reclaimed powder being pumped back into your powder hopper.

What If I Think I Have A Powder Problem?

Powder Coating And Color Chart

If you think you may be having a finish issue that’s linked to a problem with your powder, always start by contacting your powder supplier. Powder coating vendors have access to tools that the average powder coating shop or finish line manager does not. Listen to your powder supplier and follow their suggestions. Don’t be shy about asking them to look into potential powder problems, but remember that most coating defects are due to process issues, not defective powder coating media.

In a spray-to-waste environment, your supplier may elect to replace questionable powder or have it analyzed to confirm that it isn’t defective. It’s likely that they will want to review the way your using their product, and they may find a production issue that you’ve overlooked.

If you do a lot of reclaim, your powder supplier can test your virgin and reclaim samples to let you know what you can expect from your powder as far as average powder particle size. By keeping good ratios of virgin and reclaim, you can adjust your guns to the appropriate settings to get repeatable, high-quality finishes.

Need Expert Help?

Reliant Finishing Systems is a U.S. manufacturer of high-performance powder coating equipment. In addition to building powder spray booths and powder curing ovens, we manufacture blast rooms and wash stations. We also have experienced powder coating specialists on-staff and offer line audits and on-site troubleshooting. If you need powder coating equipment or expert advice, give us a call today.

An Introduction To Powder Coating Quality Control Testing

Once you’ve completed a powder coating job, your next step is quality control testing. Whether the coating has to withstand harsh environments or resist normal wear and tear, you – and your customers – need to know what to expect from your coating work.

Profitable job shops make sure they meet their customers’ coating specifications. Successful manufacturers also perform rigorous testing to ensure that their powder coated products meet pre-set standards. If you want to retain customers and expand your powder coating business, you need to focus on the quality of your work. The same attention to quality is critical if you want to keep an in-house coating department on the right track.

Flexibility, color, gloss, adhesion, corrosion resistance, chemical resistance, durability, film thickness, proper curing and overall appearance are all things you can test for as part of a quality assurance program.

Practical Quality Control Testing Methods

No matter what you are coating, there are a few tests you need to add to your daily process. The most common areas to test for basic powder coating functionality are:

  • Film Thickness
  • Uniformity/Proper Curing
  • Adhesion
  • Appearance

Because proper quality control testing is so important to your success and reputation, we recommend these tests be performed daily, or at least once with every batch of products–and any time you change your coating products or processes.

 Powder Coating Film Thickness Testing

powder-coating-gauge-for-quality-control-testingA film thickness test determines the thickness of the powder on the part once it’s been cured. This is generally confirmed with a Dry Film Thickness gauge. These gauges are fairly affordable and easy to use.

A common range to look for is 2-3 dry mils (thousandths of an inch). A coating of 2-3 mils usually provides complete coverage of the powder over the metal.

Remember: Make sure that if you powder coat both steel and aluminum, you purchase a gauge that will measure both ferrous and non-ferrous metals.

If you are getting less than 2 mils, you are at risk of not providing full coverage on the product. If you are over 5-7 mils in a single coat, you could be wasting powder or causing surface appearance defects like “orange peel” or runs. In either case, adjustment of the powder coating application is needed.

Powder Coating Uniformity/Cure Testing

mek-solution-for-powder-coating-testingWhen we talk about “cure” in quality control, we’re talking about the correct temperature and dwell time that allows the powder to achieve it’s formulated hardness and chemical resistance properties. When testing for cure, you want to make sure that there aren’t any areas of overbake (where the powder has cured in a dry and brittle fashion) or underbake (where the powder has not completely cured).

A cure test is easy to perform. Proper curing is confirmed by rubbing a methyl ethyl ketone-soaked cotton swab lightly over a cured panel or part (in an inconspicuous area if the part is to be used if acceptable). Application of 20 double rubs (back and forth over the same spot) is a common standard for checking cure, but you will usually see failure after about only three or four passes. If the finish deteriorates to the point that you expose bare metal, your cure is lacking or the powder is defective. If the coating softens but then recovers, you are fine. Some color may transfer to the cotton swab, but that is normal, especially with hybrid powder coatings.

If your parts are failing their cure tests, temperature in the oven or dwell time in the oven may need to be increased. Be careful when adjusting your process not to overcure, as that can cause issues like adhesion failure; dulling of gloss; or yellowing and browning of the color, especially if you are coating white.

Powder Coating Adhesion Testing

Adhesion testing measures how well the powder sticks to the part once it is fully cured. As with the cure test, your adhesion test results can be affected by overbake or underbake.Generally, adhesion testing kits are available for specific testing requirements.

You can perform a simple adhesion test on your powder coated products using some common tools you likely already have at your shop – but remember, the adhesion test is a destructive test. Do not do this on parts you want to use because this test will ruin the finish.

Adhesion Testing Supplies For Powder Coating Quality Control TestingTo perform the adhesion test, you will need some sticky clear tape and a utility knife. You will also want at least one test panel that you have already coated and cured.Make sure the part or test panel is clean and dry.

Again, this is a destructive test, so make sure you test adhesion on a part you won’t mind throwing away or completely reworking.


Next, using the utility knife, scribe a section of the part five times one way and then again 5 times perpendicular to the first scratches.This will give your part’s coating a grid-like appearance. Make sure you cut through the coating to the metal.

powder coating grid for adhesion testing

After making the cuts, put a piece of tape over the grid and smooth out any air bubbles. The tape should completely cover the grid. Pull the tape off aggressively and look at the tape and the part. An acceptable result will show only a little of the powder coming off from the grid cuts. If a square or two of coating is removed, adhesion can be suspect. If your coating comes off in a sheet, then you have adhesion failure.

Adhesion failures can be caused by several factors. One of the first places to look is metal preparation. If the metal is too slick or oily, powder will not be able to stick to the surface. Make sure the substrate is clean and etched/abraded. Overcure can also cause the powder to become so brittle that it will easily pull away from the metal. Old powder may have issues that can cause lack of adhesion as well. Proper process evaluation will lead you to the cause of the failure.

Powder Coating Appearance Evaluation

Powder Coated Parts On RackOne of the advantages of powder coating is how good the finished product looks. All your products should be inspected before shipment to make sure that there aren’t gaps in coverage, bubbles, warping or poor coating application. If your quality assurance manager is actively looking for defects, problems with the powder or the product can be fixed before delivery.


The second part of your appearance testing routine involves taking time to communicate with your customers. Every customer should have an idea of what he or she considers to be an acceptable finish, but it may take some discussion to determine what’s realistic and measurable. A finish standard can be as simple as no more than two visible surface imperfections per square foot. Or it can be no blisters or pinholes visible on the primary surfaces. Gloss and color standards may also be included. If a customer has very precise requirements, we recommend investing in a gloss meter/color eye (spectrophotometer or similar) to make certain the customer receives exactly what they expect.

Appearance issues can be caused by many factors. Contamination is usually the biggest problem. Shop dirt, welding debris, sanding dust or other airborne contaminants can get on the parts. These substances can cause the powder to react negatively or simply fail to cover the contamination. Proper cleaning and pretreatment can address these issues.

Unfortunately, improper cleaning contributes to many appearance issues. Ignoring rust or residue can prove costly in the long run. The use of poorly mixed or overly-diluted chemicals, the application of inappropriate detergents, and other pretreatment shortcomings related to carelessness can also cause significant finish problems.

Sometimes water in compressed air lines or high humidity in the shop environment can cause powder to clump and generate unwanted appearance issues. Evaluating your process by eliminating one variable at a time is crucial for discovering what’s causing the issue.

Adding Quality Control To Your Powder Coating OperationInspecting Powder Coating For Quality Control

Generally speaking, the four basic tests discussed in this article should be included in any powder finishing process. Other periodic laboratory tests may be needed. These include salt-spray, UV exposure, QUV, taber abrasion testing, etc. Most of the lab testing can be done by your powder supplier. Be sure to communicate fully with your customer, as well as your powder media and pretreatment chemistry suppliers, to clarify what testing is required and what standards the finished parts must meet.

Need Help Getting Your Line Back Into Shape?

Reliant Finishing Systems manufactures all types of powder coating equipment and offers a wide variety of repair and troubleshooting services for the powder coating industry.


Need equipment? Reliant builds blasting enclosures, gas and electric ovens for parts drying and powder curing, environmental rooms, powder application booths, spray walls, multi-stage parts washers, and manual wash stations. Our systems specialists have years of experience with the design and installation of powder coating lines of all sizes.pic-4-1

If you already have equipment in place, Reliant can help. Whether you need a line audit to help you increase throughput or simply need to run a Datapaq to diagnose possible hot spots in your oven, our team of experienced technicians can help. Give us a call today.

Using Masking and Plugs for Powder Coating

espos powder coating masking example

Thanks to Espo’s Powder Coating for providing a great example of proper masking with this turbocharger housing.

Regardless of what you’re powder coating, there will likely be an area on your part where you DO NOT want any powder coating to be applied. Screw holes, pipe fittings, precisely machined surfaces and sleeves or cylinder interiors are some of the places where powder will interfere with the fitment needed during assembly. If powder gets in the wrong place, it can definitely cause problems down the line.

Thankfully, there are a couple easy techniques you can use to prevent powder from going where you don’t want. By using “masking” and “plugs,” you can get the results you need. This article explains when to use masking and plugs for powder coating and also describes the supplies you’ll need in order to use either method. Follow these simple tips and you’ll soon be producing incredible-looking finishes that fit together perfectly during assembly.

Masking For Powder Coating

Powder Coating Masking TapesMasking is the term we use when we want to shield fairly large areas of a part during the powder coating process. For powder coating masking, a high-temperature masking tape is required. Some companies use the term “high-temperature masking film,” especially for larger tape sizes or material that can be cut into sheets.

Remember: Powder curing typically takes place between 380° F and 450° F, so be sure that your masking material is rated for those temperatures before using.

Masking is usually done after the chemical pretreatment stage of your coating process. Follow your pretreatment steps as normal and allow the part to dry fully before applying the high-temp tape to any areas that require masking. The pretreatment process will provide the uncoated metal with some amount of corrosion protection prior to assembly.

If the metal requires blasting prior to coating and needs to be masked before blasting, you will need a different, more durable tape. Resilient high-temp tapes can be left in place, but they are usually fairly expensive. Alternatively, you can also use a thicker version of normal masking tape. You would apply it for the blasting process, remove it after the part has been blasted, and then apply high-temp tape over the areas you want to shield. If you use chemical pretreatment after blasting a part, be sure all tape is removed before the part is treated. Mask the part with high-temperature tape only after it has dried fully and you’re ready to coat.

When working with high-temp masking tape, the tape stays in place while the part is being sprayed and cured. You should be able to coat and cure the part as usual after the tape has been applied. Once the part is fully cured, you remove the tape.

TIP: When removing the tape, try to take it off while the part is still fairly hot. Around 200° F is the optimal temperature to remove the tape. If you take it off too early, while the part is too hot, it can cause strings of powder to pull off at the edge of the tape and result in a defective finish. If you wait until the part is too cool, there can be chipping or a rough line along the edge of the coating when the tape is removed.

Advanced Masking Technique: Two-Tone Powder Coating Finishes

advanced powder coating masking techniquesTwo-tone and multi-color finishes are achieved when two or more different colors of powder are applied to the same part. High-temperature tape and/or masking film is used to achieve this type of finish. A two-tone finish is applied like any other powder coating that requires masking, but special care should be taken to ensure that the results are acceptable.

When applying two-tone or multi-color finishes, you may need to use slightly different masking, coating and curing techniques than you normally would. You’re still dealing with a situation where you’ll be spraying a part and some portion of the part shouldn’t have any powder applied to it, but you will need to spray and cure the part more than just once.

Recommended Rules For Two Tone Application

When masking the part, always try to limit skin contact on the bare metal. Your skin has oils that can cause issues later when you apply the remaining color(s).

As with normal masking, take the tape off of the part when it is around 200° F. A handheld laser-pointer IR temperature gauge is good enough for checking the metal temperature after curing, once the part is outside of the oven.

Make sure the first coat is fully cured and cooled before re-taping for the second color. The adhesive on the tape can cause finish problems if the powder has not fully cured. Also, you may want to wipe the remaining bare metal surface with alcohol before coating just to make sure no contaminants are still on the surface from the previous masking. For multi-color finishes, you’ll re-mask the part after each coat has been applied and cured.

Check with your powder provider in advance to be sure that the powder you’ll be working with is appropriate for two-tone or multi-color applications. You’ll also want to consider just how long to cure the part each time you spray a new section. You may need to adjust the curing temperature to assure that each coat is adequately cured without becoming discolored. It is easy to under-cure the last coat if you become concerned about over-curing previously applied powder. Remember that most powders are hard to over-bake if you are careful.

Two-tone finishes require extra care to get right, especially if the line between one color and the other is on a flat or oddly contoured surface. Extra care when masking can make the difference between a great finished product and a reject, so take your time.

Plugs For Powder Coating

powder coating plugsPlugs are commonly used to keep powder out of screw holes or other recesses where powder would interfere with the assembly of a part or its working operation.

Remember: Just like masking, make sure your high-temperature plugs are rated for the appropriate oven temperature. Always check the temperature rating on the plug before using.

Like tape, plugs are also used after pretreatment. Prior to inserting the plugs, blow out the holes with compressed air to ensure all moisture is out of the part. Trapped moisture in hard-to-reach areas can cause surface defects if the moisture leaks from the part during the curing cycle.

Plugs can be reused, as long as they do not get impregnated with powder. When reusing plugs, try to remove as much old powder as possible from the plug to keep from contaminating the next part.

TIP: When removing the plug, try to remove it when the part is around 200° F for the same reason as when using tape. You’ll get cleaner edges and have fewer defects.

Improve Your Powder Coating With Quality Equipment

Your finish quality is tied directly to the tools you use. If you’re going to be doing professional quality work, you need professional quality powder coating equipment. Reliant Finishing Systems only partners with premium quality, brand-name powder gun manufacturers like Wagner. We only integrate premium component for use with powder coating booths and powder curing ovens.

Looking to upgrade your powder coating results? Let Reliant help you with the equipment and support you need. Give us a call today.